Java PathFinder
A Translator from Java to Promela

Klaus Havelund and Thomas Pressburger

NASA Ames Research Center, Recom Technologies, Moffett Field, California, USA.
Email: {havelund,ttp}@ptolemy.arc.nasa.gov

Abstract. This report outlines some high level ideas for translating
JAVA to the PROMELA, the “programming language” of the SPIN model
checker. The purpose is to establish a framework for verification and
debugging of JAVA programs based on model checking. This work shall
be seen in a broader attempt to make formal methods applicable “in
the loop” of programming within NASA’s areas such as space, aviation,
robotics, and ground control software. Our main goal is to achieve au-
tomated formal methods, such that programmers themselves can apply
these in their daily work (in the loop) without specialists interfering
and without necessarily having to manually reformulate a program in a
different notation in order to analyze the program. The work has been
spawned of by an effort to formally verify, using SPIN, a multi-threaded
operating system programmed in Lisp for space crafts. A Java Specifica-
tion language is furthermore presented, which makes it possible to state
properties about JAVA programs. The language is new in the sense that
it is based on linear temporal logic formulae that can occur any place
a statement can occur. Hence, these formulae can be deeply embedded
in JAVA code and should correspondingly be interpretated on paths only
that start at these points — and not from the beginning of the program
execution as is the case for SpIN LTL formulae.

Table of Contents

1 Introduction 4
1.1 Source and Target Language 4

1.2 Motivation for the Work oL, 5

1.3 Outline of the Report 5

2 Extensions to the SPIN Language 7
3 Classes, Objects and Methods 8
3.1 Example JAVA Program to be Translated 8

3.2 Translation e 9
321 General Ideas 9

3.2.2 Translation of Class X 10

3.2.3 Translation of Class XY 11

3.2.4 Translation of Class Main 13

4 Threads ittt 14
4.1 Example JAVA Program to be Translated 14

4.2 Translation e e 15
4.2.1 Modifying Type ClassName 15

4.2.2 Translation of Class Adder 15

4.2.3 Translation of Class Main 15

5 Synchronization 17
5.1 Example JAVA Program to be Translated 17

5.2 Translation e 17
5.2.1 General Ideas 17

5.2.2 Translation of Class XY 19

6 Wait, Notify and NotifyAIl 21
6.1 Example JAVA Program to be Translated 21

6.2 Translation e 23

7 Suspend and Resume 27
7.1 Example JAVA Program to be Translated 27
7.1.1 More about Specifying Properties 27

7.1.2 The JAVA Program 28

7.1.3 More About the Specification 30

7.2 Translation 30

7.2.1 General Ideas, 30

7.2.2 Translation of Class Status 32

7.2.3 Translation of Class Agentl 32

7.2.4 Translation of Class Agent2 33

7.2.5 Translation of Class Main 34

7.3 Alternative Translations, 35

8 Stop, Join, isAlive Lo 36
8.1 Example JAVA Program to be Translated 36
8.1.1 The JAVA program 36

8.1.2 The Specification 38

8.2 Translation L 38
821 General Ideas 38

8.2.2 Translation of ClassObj 42

8.2.3 Translation of Class Data 42

8.2.4 Translation of Class Job 44

8.2.5 Translation of Class Stop 44

8.2.6 Translation of Class Main 45

9 Yieldand Sleep 47
10 Data Structures Lo 48
11 EXPressions oo vttt e e e e e 49
12 Exceptions 50
13 Priorities 51
14 Specifications Lo L 52
14.1 The Verify Class i ittt 52
14.1.1 Syntax and Outline of Semantics 52

14.1.2 More about Semantics 52

14.1.3 Correspondenceto LTL 95

14.2 Interpretation of Verifications 56
14.3 Using Inheritance to Avoid Class Prefixes 57
14.4 Properties as Methods instead of as Statements. 59
14.5 Comments and Language Extension 60

A The Producer/Consumer Example 62

1 Introduction

This report outlines some high level ideas for translating JAVA to the PROMELA,
the “programming language” of the SPIN model checker. The purpose is to es-
tablish a framework for verification and debugging of JAVA programs based on
model checking. This work shall be seen in a broader attempt to make formal
methods applicable “in the loop” of programming within NASA’s areas such as
space, aviation, robotics, and ground control software. Our main long term goal
is to achieve an automated formal methods workbench, JAVAPROVER, for JAva
programming, such that programmers themselves can apply these in their daily
work (in the loop) without specialists interfering and without necessarily having
to manually reformulate a program in a different notation in order to analyze
it. Although the presented work is based on a translation of JAVA to PROMELA,
future work will very likely focus on writing a model checker for JAVA from
scratch, thereby obtaining a more efficient system. The work presented in this
report will provide an initial pioneering effort along that line.

1.1 Source and Target Language

Java [1] is a general purpose object oriented programming language with built
in mechanisms for multi-threaded programming [5]. It was originally designed to
support internet programming, but goes well beyond this domain. It is always
difficult to predict the future, but a prediction is that JAVA becomes as widely
spread as is C++ today. JAVA is a relatively simple language compared to C++,
and it is regarded as a much safer language, amongst other things due to its
automatic garbage collection and lack of general pointers. In spite of its simplicity
it appears to be a powerful language.

SPIN [4] is a verification system that supports the design and verification
of finite state asynchronous process systems. Programs are formulated in the
PROMELA programming language, which is quite similar to an ordinary pro-
gramming language, except for certain non-deterministic specification oriented
constructs. Processes communicate either via shared variables or via message
passing through buffered channels. Properties to be verified are stated in the
linear temporal logic LTL. The SPIN model checker can automatically determine
whether a program satisfies a property, and in case the property does not hold,
an error trace is generated. For the remaining part of this report, we shall often
use the term SPIN to also represent the PROMELA language.

There are several reasons for choosing JAVA as the source language. First of
all it seems to become a popular language that will attract a lot of attention
from the programming community. There are good chances that JAvA will be-
come widely used. As a well-known Computer Scientist (who probably wants to
stay anonymous) said: “in a few years, 999 out of 1000 programs will be written
in JAVA”. Second, it is object oriented, which seems to be a strong trend in
programming language design. Object orientation has strangely enough not yet

hit the model checking community. Certain attempts have been made to provide
object oriented versions of pure specification languages such as Z (O0OZ) and
VDM (VDM++). Hence, proving a model checker for an object oriented lan-
guage appears to be a research topic. Third, and finally, JAVA is quite a simple
language, and in fact not that far away from PROMELA in complexity. It seems
to be a natural “next step”.

It is often claimed that model checkers of today cannot handle real programs,
and consequently neither real JAVA programs. This is certainly true. However,
there are two aspects that make our effort worthwhile anyway. First, by providing
an abstraction workbench we will make it possible to cut down the state space
of a JAVA program. Second, JAVA can be used as a design language, just as
PROMELA.

1.2 Motivation for the Work

The work has been spawned of by an effort to formally verify, using SPIN, a multi—
threaded operating system for space crafts. This work is documented in [3]. The
operating system is one component of NASA’s New Millennium Remote Agent
(RA) [6], an artificial intelligence based spacecraft control system architecture
that is scheduled to launch in December of 1998 as part of the DEEP SPACE
1 mission to Mars. The operating system is implemented in a multi-threaded
version of COMMON Lisp. The verification effort consisted of hand translating
parts of the LISP code into the PROMELA language of SPIN. A total of 5 errors
were identified, a very successful result.

The hardest part of that work was to understand another persons code and
to translate from this code to PROMELA. A third activity was to perform ab-
stractions before the translation. That is, basically throwing away code irrelevant
to the properties we wanted to verify. The conclusion from this work was that
the programmer him /her self should carry out the verification (solves the under-
standing problem) and that the translation should be automatic. What is left is
the abstraction problem, and for that purpose we have a parallel effort to build
an abstraction workbench where one can directly reduce a JAVA program’s state
space for the purpose of efficient modelchecking.

1.3 Outline of the Report

Section 2 presents a few extensions to the PROMELA language that we have
found useful for the presentation. Then follows a sequence of sections, 2-13, each
discussing the translation of a particular JAVA concept. As a general approach,
in each section we present the translation of a complete JAVA program that
illustrates the concepts focused on in that section. To a certain extend, the
report serves two purposes: to define the translation, and to show how (whether)
it works. In other words, the report documents a sequence of experiments with

hand translating JAVA programs. One of the translations has a size that made
it qualify as being included as an appendix.

During the work a language for specifying properties about JAVA programs
has developed on the sideline. Most of the JAVA programs presented in this
report include such specifications, and a final section gives a general outline of
such a specification language. This language is new in the sense that it is based
on linear temporal logic formulae that can occur any place a statement can
occur. Hence, these formulae can be deeply embedded in JAVA code and should
correspondingly be interpretated on paths only that start at these points (and
not from the beginning of the program execution as is the case for SPIN LTL
formulae). Of course they will be translated to SPIN’s LTL formulae.

The report documents work in progress, and does currently not cover all of
JAVA.

2 Extensions to the SpiN Language
We shall use the following notation for enumerated types:

type
process_state = {suspended,waiting,runnable,stopped}

This will represent the following macro definitions:

#define process_state byte
#define suspended 0
#define waiting 1
#define runnable 2
#define stopped 3

Also, we shall assume we can write type equations of the form:

type
array_index = byte

being mapped into:

#define array_index byte

3 Classes, Objects and Methods

The presentation of the translation scheme will be illustrated by translation of
real complete JAVA programs. In this way we hope to provide a more complete
comprehension of the translations needed, to ourselves as well as to the reader.

3.1 Example JAvA Program to be Translated

A JAVA class is generally speaking described by a name, a set of data variables, a
constructor (method) that is executed when an object is created, and a collection
of methods. Consider the complete JAVA program in figure 1, which we shall
translate into SPIN.

This program defines first of all a class Verify, which basically just defines
the method assert, which when called with a string “t” and a false argument
prints: assertion t broken. The method is defined as static meaning that the
method can be called without creating an object of the class. We shall call this
method in places where we want an assertion to be verified. Running the above
program will in fact not result in this assertion to be broken. Hence, the program
is correct with respect to that assertion, and the corresponding SPIN program
should therefore neither detect an error.

The class X introduces a variable x and a method for updating it. Class XY
extends X by adding another variable y, a method for updating that, and a
method add for updating x as well as y. The essential contents of this method
is the calls:

add2x (dx) ;
add2y (dy) ;

The code surrounding these two statements makes up a post condition:

int old_x =
int old_y

|
o]

¥

Verify.assert("updated", x == old_x + dx &

y == old_y + dy);

That is, the auxiliary variables old_x and old_y are introduced to hold the old
values of the updated variables.

class Verify{
public static void assert(String name, boolean b){
if (!b) System.out.println("assertion " + name + " broken");
}

}

class X{
public int x;
public XO{x = 0;}

public void add2x(int d){x = x + d;}
}
class XY extends X{

public int y;

public XYO{y = 0;}

public void add2y(int d){y =y + d;};

public void add(int dx, int dy){
int old_x = x;
int old_y = y;
add2x (dx) ;
add2y (dy) ;
Verify.assert("updated", x == old_x + dx &
y == old_y + dy);
}
}

class Main{
public static void main(String[] args){
XY xy = new XYQ);
xy.add(4,4);
}
}

Fig. 1. JAVA : An example program

3.2 Translation

3.2.1 General Ideas The general principle behind the translation is the fol-
lowing. A JAVA class basically consists of data variables and methods. For each
new creation of an object, a new set of data variables, a data area, is allocated,
and the methods of that object will then work on this newly allocated area.
Hence, at any point in time a set of data areas will have been allocated, one
for each object not garbage collected. We shall in fact not assume any garbage
collection at all. We shall model the set of data areas of a class by an array of
records (typedef’s in SPIN terminology), one record for each data area. An index

variable will point to the next free record in the array, initially having the value
0 (first record in the array). Methods are mapped into macros.

Before we go the translation of each class, a few types needs to be defined,
see figure 2.

type
Index = byte,
ClassName = {X,XY,Main}
typedef
ObjRef{ClassName class; Index index};

Fig. 2. SPIN : Some basic types

The type ClassName is an enumerated type containing the names of all classes
defined in the JAVA program. The type ObjRef represents object references: an
object reference is a pair consisting of a class, and an index pointing to the
position in the array holding the corresponding data area. Two more constants
are needed, as defined in figure 3.

#define undefined O
#define MAX 5

Fig. 3. SPIN : A couple of constants

The constant undefined is used to denote a “don’t care” value used in particular
contexts. The constant MAX denotes the maximum number of objects allocated
for each class, hence the size of the arrays. Now to the translation of the three
classes. We translate class X first, as shown in figure 4.

3.2.2 Translation of Class X First, a typedef declaration defines the type
X_Class of X’s data area, just containing a single integer variable x. An array
X_0bj of these records is defined together with a variable X Next, that at any
point in time points to the next free record to be allocated on a new object
creation.

Then follows a couple of macros X_get_x and X_set_x for accessing the vari-
able x (there are two such macros for each variable). These macros take as
parameter an object identification of type ObjRef. The idea here is, that the
methods call these two macros for accessing the variable x. As can be seen from

10

typedef X_Class{
int x
s

X_Class X_0Obj[MAX];
Index X_Next = 0;

#define X_get_x(obj)
(obj.class == -> X_0bj[obj.index].x :
(obj.class == XY -> XY_0Objlobj.index].x : undefined))

#define X_set_x(obj,value)
if
:: obj.class X -> X_0bjlobj.index].x = value
:: obj.class == XY -> XY_0Objlobj.index].x = value
fi

#define X_constr(obj)
ObjRef obj;
obj.class = X;
atomic{obj.index = X_Next; X_Next++};
X_set_x(obj,0)

#define X_add2x(obj,d)
X_set_x(obj,X_get_x(obj) + d)

Fig. 4. SpIN : Translation of class X

the JAVA program, the class XY is defined as a subclass of the class X. Hence, at
runtime, in order to access the variable of an object, one needs to know which
class (X or XY) in order to access the correct SPIN array, and of course also which
index (which record in that array). There will be a conditioned branch for each
subclass of the class where the variable is introduced.

The macro X_constr defines the constructor. The JAVA constructor is pa-
rameter less, while the SPIN constructor takes an object as parameter, and “al-
locates” this object. Hence, the JAVA declaration: “X x = new X()” would cor-
respond to the macro call “X_constr(x)”. One sees how the class is set to X
and how the index is set to point to the next free record. The variable x is then
initialized to 0.

Finally, the method add2x is translated into the macro X_add2x. Note how all
macros are parameterized with object references of the type ObjRef.

3.2.3 Translation of Class XY The translation of the class XY follows pretty
much the same rules, and is shown in figure 5. The type XY_Class now contains
the variable x from class X (which class XY extends), and the variable y which is

11

new. This is how we basically model inheritance: variables from inherited classes
are simply included (simple text inclusion) in the resulting record. Concerning
the variable accessing macros, note that these have no conditional bodies since
the class XY has no further subclasses in the program.

typedef XY_Class{
int x;
int y
};
XY_Class XY_0bj[MAX];
Index XY_Next = O;

#define XY_get_y(obj)
XY_0Obj[obj.index].y

#define XY_set_y(obj,value)
XY_0Obj[obj.index].y = value

#define XY_constr(obj)
ObjRef obj;
obj.class = XY;
atomic{obj.index = XY_Next; XY_Next++};
X_set_x(obj,0);
XY_set_y(obj,0)

#define XY_add2y(obj,d)
XY_set_y(obj,XY_get_y(obj) + d)

#define XY_add(obj,dx,dy)
old_x = X_get_x(obj);
old_y = XY_get_y(obj);
X_add2x(obj,dx) ;
XY_add2y (obj,dy) ;
assert(X_get_x(obj) == old_x + dx &
XY_get_y(obj) == old_y + dy)

Fig. 5. SPIN : Translation of class XY

The constructor XY_constr allocates an XY object and initializes all variables:
the inherited x (by repeating class X’s constructor contents) and the new y.
Finally the two new methods are translated into two macros.

The example shows how we deal with variables local to methods. The method
add has two local variables: 01d_x and old_y. Since SPIN does not have a local
scope concept, except for proctypes, we have to declare these two variables glob-
ally to the thread that finally calls this method, and in this case it is the main

12

program. The main program can be thought of as a thread in its own. See figure
6 below. One can think of this way to deal with variables local to methods as the
way such variables (local to SUBROUTINES) are laid out in FORTRAN pro-
grams. Each such variable is only laid out once in a static area. This of course
prevents recursion.

We see how the assert statement of SPIN verifies the condition corresponding
to the Verify.assert call in the JAVA program. This is a way to verify post
conditions.

3.2.4 Translation of Class Main The class Main is translated into SPIN’s
init—section, see figure 6. We assume in general that a Main class is defined,
which only contains one static method called main. We see how an object of type
XY is constructed, and how one of its methods is called.

init{
int old_x;
int old_y;
XY_constr(xy);
XY_add(xy,4,4);

}

Fig. 6. SPIN : Translation of class Main

13

4 Threads

Threads in JAVA allow us to write concurrent programs. Each JAVA thread cor-
responds to a process (in SPIN terminology), and threads therefore execute in
parallel.

4.1 Example JAvA Program to be Translated

Consider the JAVA program in figure 7. The classes Verify, X and XY are as
before. We have added the class Adder, which extends the Thread class: hence,
objects of this class are threads. A thread class must contain a run method
which is executed when an object of that class is started with the start method
(defined in the system—defined Thread class). The program works as follows: two
threads of the Adder class are started, each working one the same XY object. Each
thread adds 4 to x as well as to y of the shared XY object (given as parameter
to the thread constructors). This way of sharing an object between two or more
threads is common in JAVA.

class Verify{...};
class X{...};
class XY extends X{...};

class Adder extends Thread{
private XY xy;

public Adder (XY xy){this.xy = xy;}

public void run(){xy.add(4,4);}

}

class Main{
public static void main(String[] args){
XY xy = new XYQ);
Adder adderl = new Adder(xy);
Adder adder2 = new Adder(xy);
adderl.start();
adder2.start();

Fig. 7. JavA : Example extended with threads

In this new program, the assertion in the add method in the XY class no
longer holds in all reachable state: the post condition for the method is false.

14

The assertion postulates that after each call of add (before it terminates) the
new values of x and y are as the old values, except for updated with the new
deltas. They are not, however, if threads are arbitrarily interleaved: suppose one
thread executes xy.add(4,4) and now wants to execute the assertion. Suppose
then that the other thread, before the assertion, executes, hence changing the
variables. Now the assertion of the first thread is not true. When we run the
JAVA program, this will not be discovered. When running the SPIN model this
error is identified immediately. The result is an error trace illustrating the above
described situation.

4.2 Translation

4.2.1 Modifying Type ClassName Before we translate the new classes, the
type ClassName has to be modified to include the new class name Adder, as
shown in figure 8.

type ClassName = {X,XY,Adder,Main}

Fig. 8. SPIN : Extending the ClassName type

4.2.2 Translation of Class Adder The translation of the Adder class is
shown in figure 9. Since it is “just” a class, it has basically the same kinds
of components as the other classes we have seen. That is, the array of data
areas, the macros that access the variables, and the constructor. Note how the
macro Adder_set_xy assignes the value in two sub-statements. This is necessary
because SPIN does not allow assignment to record variables, except for field by
field. What is new is the Adder _Thread proctype definition. That is, the run
method of the JAVA program is translated into a SPIN proctype, which is then
made an instance of for each time an object of this class is started with the
start method. Note how the variable o1d_x and old_y local to the add method
in the XY class are now “layed out” in the Adder_Thread proctype. Hence, when
we later create several instances of this proctype, we will get as many layouts of
these variables.

4.2.3 Translation of Class Main The Main class is (again) translated into
an init section as shown in figure 10. We see how an object xy of the class XY is
created, and how it is given as parameter to the two Adder threads. The start
calls in the JAVA program are translated into run—statements.

15

typedef Adder_Class{
ObjRef xy

s
Adder_Class Adder_0bj[MAX];
Index Adder_Next = 0;

#define Adder_get_xy(obj)
Adder_0bj[obj.index].xy

#define Adder_set_xy(obj,value)
Adder_0bj[obj.index] .xy.class = value.class;
Adder_0bjlobj.index].xy.index = value.index

#define Adder_constr(obj,xy)
ObjRef obj;
obj.class = Adder;
atomic{obj.index = Adder_Next; Adder_Next++};
Adder_set_xy(obj,xy)

proctype Adder_Thread(ObjRef obj){
int old_x;
int old_y;
XY_add (Adder_get_xy(obj) ,4,4);

}

Fig. 9. SpIN : Translation of class Adder

init{
XY_constr(xy);
Adder_constr (adderi,xy) ;
Adder_constr (adder2,xy) ;
run Adder_Thread(adderl);
run Adder_Thread(adder2)

Fig. 10. SPIN : Translation of class Main

16

5 Synchronization

5.1 Example JAVA Program to be Translated

Learning from the error trace produced by the modelchecker we decide to correct
our program. Basically, we want to prevent two (or more) calls of the add method
to execute concurrently — at the same time. One call should finish before the other
is started. One way to obtain this is to declare the add method as synchronized,
using the synchronized keyword of JAVA as illustrated in figure 11. In fact, here
we have also declared add2y as synchronized, even though this is not necessary
if we only want to prevent several concurrent calls of the add method. That
is, all methods that a syncrhonized method calls will become synchronized also
relative to that call. However, we want to demonstrate that our technique also
works for the case where several methods that call each other are synchronized.

class XY extends X{
public int y;
public XYO{y = 0;}
public synchronized void add2y(int d){y = y + d;};
public synchronized void add(int dx, int dy){
int old_x = x;
int old_y = y;
add2x (dx) ;
add2y (dy) ;
Verify.assert("updated", x == old_x + dx &
y == old_y + dy);

Fig.11. JAvA : methods add2y and add become synchronized

5.2 Translation

5.2.1 General Ideas Only one thread at a time may execute any ”synchro-
nized” method on the same object. This requires mutual exclusion. Our solution
is to add an integer typed field LOCK to the data area for an object that has
synchronized methods, which at any time contains the process identifier of the
thread that currently is executing a synchronized method on the object. In case
no synchronized method is executed, the LOCK field contains the null value be-
ing equal to —1 (proper process id’s in SPIN are always non-negative). Hence,
once this field is set to a proper process id by a process that calls a synchronized

17

method, only the process with this process id is allowed to operate on the ob-
ject. When the call of the synchronized method terminates, the lock is released
by setting it back to null. These modifications only affect the translation of
class XY, which is shown in figures 14 and 15 to be explained in a moment.

First of all, however, we need two extra constants, null and this, as defined
in figure 12. The constant null denotes the non-proper process id, while the
constant this at any time denotes the process id of the currently running process,
in SPIN denoted by _pid.

#define null -1
#define this _pid

Fig. 12. SPIN : Process id constants

Figure 14 shows first part of the translation of class XY. It shows the new
definition of the typedef XY_Class which now includes the new LOCK field. Since
this field is just like any other variable, two macros get_LOCK and set_LOCK are
introduced to access and modify it, see figure 13. Furthermore, two macros lock
and unlock for locking and unlocking an object are introduced. The 1ock macro
is called by a process (coresponding to a JAVA thread) when that process calls
a synchronized method. The procedure locks the object by assigning the calling
process’s process id to the LOCK field of the object. The locking can, however,
only be allowed if noone else has locked the object, hence only if the LOCK field
has the value null. Unlocking of course then means resetting the value to null.

#define get_LOCK(obj)
XY_0bj [obj.index] .LOCK

#define set_LOCK(obj,value)
XY_0Obj[obj.index] .LOCK = value

#define lock(obj)
atomic{
get_LOCK(obj) == null ->
set_LOCK(obj,this)}

#define unlock(obj)
set_LOCK (obj,null)

Fig. 13. SPIN : Synchronization locking

18

5.2.2 Translation of Class XY Figure 14 shows first part of the translation
of class XY. The constructor XY_constr is modifed to initialize the LOCK field to
null.

typedef XY_Class{
int LOCK;
int x;
int y
}s
XY_Class XY_0Obj[MAX];
Index XY_Next = 0;

#define XY_get_y(obj)
XY_0Objlobj.index].y

#define XY_set_y(obj,value)
XY_0Objlobj.index].y = value

#define XY_constr(obj)
ObjRef obj;
obj.class = XY;
atomic{obj.index = XY_Next; XY_Next++};
set_LOCK(obj,null);
X_set_x(obj,0);
XY_set_y(obj,0)

Fig. 14. SPIN : Translation of class XY — part I

Figure 15 shows second part of the translation of class XY. For each syn-
chronized method M (add2y and add) in the JAVA program we introduce two
macros: XY_M_code and XY_M. The XY_M_code macro contains the proper code of
the method. The XY_M macro calls the “proper” macro, but performs locking
before the call if needed, and consequently unlocking after. Locking only takes
place if the LOCK field of the object differs from the process id of the process
— identified by this — that wants to execute the macro. In case the LOCK field
is null the locking then takes place and the “proper” macro” is called. In case
some other process has locked the object, locking blocks until this other process
has unlocked the object again. In case the LOCK field already contains the process
id of the calling process, then the call just proceeds. This happens for example
when the XY_add macro calls the XY_add2y macro.

19

#define XY_add2y_code(obj,d)
XY_set_y(obj,XY_get_y(obj) + d)

#define XY_add2y(obj,d)

if

:: get_LOCK(obj) == this ->
XY_add2y_code(obj,d)

i1 else >
lock(obj);
XY_add2y_code(obj,d) ;
unlock(obj)

fi

#define XY_add_code(obj,dx,dy)
old_x = X_get_x(obj);
old_y = XY_get_y(obj);
X_add2x(obj,dx) ;
XY_add2y (obj,dy) ;
assert(X_get_x(obj) == old_x + dx &
XY_get_y(obj) old_y + dy)

#define XY_add(obj,dx,dy)
if
: get_LOCK(obj) == this ->
XY_add_code(obj,dx,dy)
: else —>
lock(obj);
XY_add_code(obj,dx,dy) ;
unlock(obj)
fi

Fig. 15. SPIN : Translation of class XY — part II

20

6 Wait, Notify and NotifyAll

Calling the wait () method within a synchronized method suspends the current
thread and allows other threads to execute synchronized methods on the object.
Calling the notify () method allows one (arbitrarily chosen) suspended thread
to continue past the wait (). There is also a notifyAll() method that wakes
up all threads currently having executed a wait ().

6.1 Example JAVA Program to be Translated

The JAVA program, see figures 16 and 17, that we shall translate applies all the
techniques that we have introduced so far, plus the wait () and notify() meth-
ods. The program consists of a Producer and a Consumer that communicates
through a shared data structure, the CubbyHole. The producer generates the
numbers from 0 to 9 and stores them in the cubbyhole, while the consumer reads
these numbers. In order to verify the correctness of the program, we have intro-
duced an array of received numbers within the run method of the Consumer.
This array is updated for each received value, and a final loop verifies (calling
the assert method) that the received numbers are indeed those from 0 to 9.

Note that neither the producer, nor the consumer makes any effort to ensure
that the consumer is getting each value produced by the producer once and only
once. The synchronization between these two threads actually occurs at a lower
level, within the synchronized put and get methods of the CubbyHole object.
These methods call the wait () and notify() methods in order to ensure that
the producer does not produce numbers quicker than the consumer can consume
them, which would cause numbers to be lost. Dually, it is also ensured that
the consumer does not consume numbers faster than the producer can produce
them, which would cause single values to be consumed more than once. We want
the consumer to get each integer put by the producer exactly once.

The CubbyHole class contains two private variables: contents, which con-
tains the value produced at any moment, and available, which is ¢rue whenever
a value has been produced that has not yet been consumed. This variable is used
for the correct synchronization between the Producer and Consumer.

21

class Producer extends Thread{
private CubbyHole cubbyhole;
public Producer(CubbyHole c){cubbyhole = c;}

public void run(){
for (int i = 0; i < 10; i++){
cubbyhole.put(i);}
}

}

class Consumer extends Thread{
private CubbyHole cubbyhole;
public Consumer(CubbyHole c){cubbyhole = c;}

public void run(){
int value = 0;
int[] received = new int[10];
for (int i = 0; i < 10; i++){
value = cubbyhole.get();
received[i] = value;};
for (int i = 0; i < 10; i++){
Verify.assert("received ok",received[i] == i);};
}

}

class CubbyHole{
private int contents;
private boolean available = false;

public synchronized int get(){
wvhile (available == false){
try{wait();} catch (InterruptedException e) {}};
available = false;
notify();
return contents;

}

public synchronized void put(int value){

while (available == true){
try{wait();} catch (InterruptedException e) {}};

contents = value;
available = true;
notify();

}

}

Fig.16. JAVA : An example program — part I

22

class Main{
public static void main(String[] args){
CubbyHole c = new CubbyHole();
Producer prod = new Producer(c);
Consumer cons = new Consumer(c);
prod.start();
cons.start();}

Fig.17. JAVA : An example program — part II

6.2 Translation

In this section we shall explain those parts of the translation that are related to
the wait () and notify () methods. The full translation can be found in appendix
A. The full translation has been verified correct with respect to the assertion
using the SPIN modelchecker. Modifying the assertion to a “wrong” statement
in fact does result in error traces. For example, modifying the assertion in the
JAva program for each i to (modifying the right hand side of ‘=="):

Verify.assert(”received ok” received[i] == i+1);

does in fact result in an error trace when translating this.

Figure 18 shows the definition of the CubbyHole Class record type. In ad-
dition to the LOCK field (and the user defined fields) there are two fields admin-
istrating waiting processes (those that have called wait and which have not yet
been notified). The field WAIT is a channel, and a process basically executes a
wait by executing WAIT?continue where continue is the value 0 (just some
signal). Hence, the waiting process will hang until the continue signal is sent by
some other process executing a notify or notifyAll. The WAITING field is used
to count the number of waiting processes, and is used by notofyAll to actually
free them all by sending just as many continue signals on the WAIT channel.

23

typedef CubbyHole_Class{
int LOCK;
int WAITING;
chan WAIT = [0] of {bit};
int contents;
bool available;

Fig.18. SPIN : Introducing waiting counter and channel

The macros wait, notify and notifyAll are shown in figure 19. The macros
for accessing the WAIT and WAITING fields all refer directly to the CubbyHole 0bj
array, which is the array of CubbyHole Class records. In case there are several
classes with synchronized methods, these macros must be made conditioned on
obj.class to access the correct object arrays.

Note how the wait macro unlocks the object (to let other processes get ac-
cess) before it actually “hooks up” on the WAIT channel of the object. The notify
macro only sends a continue signal if there are processes waiting, thereby avoid-
ing the notifying process to hang in case there are none waiting. The notifyAll
macro repeatedly sends the continue signal as many times as there are waiting
processes.

Finally, figure 20 shows the code macros for the get and put methods
in the CubbyHole class. Note that these macros are then called within the
CubbyHole get and CubbyHole put macros that do the locking.

The CubbyHole_get_code macro is parameterized with a variable that will be
updated with the result value (recall that the get method in the JAVA program
returns the value it consumes). The macro waits until a value is available. The
CubbyHole put_code macro on the other hand is parameterized with the value
to be produced. It waits until no value is available, and a new can be made so.

24

#define continue 0

#define get WAITING(obj)
CubbyHole_0bj[obj.index] .WAITING

#define set_WAITING(obj,value)
CubbyHole_0bj[obj.index] .WAITING = value

#define get_WAIT(obj)
CubbyHole_0bj[obj.index] .WAIT

#define wait (obj)
atomic{
unlock(obj) ;
set_WAITING (obj,get_WAITING(obj) + 1);
get_WAIT(obj)7continue;
lock(obj)}

#define notify(obj)
atomic{
if
11 get_WAITING(obj) > 0 —>
get_WAIT(obj) !continue;
set_WAITING (obj,get _WAITING(obj) - 1)
: else -> skip
fi}

#define notifyAll(obj)
atomic{
do
¢ get_WAITING(obj) > 0 ->

get_WAIT(obj) !continue;
set_WAITING (obj,get _WAITING(obj) - 1)

:: else -> break

od}

Fig.19. SPIN : waiting and notification

25

#define CubbyHole_get_code (obj,return_value)
do
:: CubbyHole_get_available(obj) == false -> wait(obj)
:: else -> break
od;
CubbyHole_set_available(obj,false);
notify(obj);
return_value = CubbyHole_get_contents(obj)

#define CubbyHole_put_code(obj,value)
do
:: CubbyHole_get_available(obj) == true -> wait(obj)
:: else -> break
od;
CubbyHole_set_contents(obj,value) ;
CubbyHole_set_available(obj,true) ;
notify(obj)

Fig. 20. SPIN : Translation of class CubbyHole — relevant parts

26

7 Suspend and Resume

The suspend() method of the Thread class suspends a running thread. The
resume () method resumes it from where it left off. If the thread that is suspended
is inside (has called) a synchronized method, and hence has locked the object
the method was called on, then it will maintain this lock during its suspension.

7.1 Example JAVvA Program to be Translated

We shall design an example to illustrate in particular these methods. Before we
proceed, we shall however extend the class Verify with a couple more specifi-
cation methods.

class Verify{
public static void assert(String name, boolean b){
if (!b) System.out.println("assertion " + name + " broken");

}
public static boolean eventually(boolean b){return true};

public static void write(String s, boolean b){
System.out.println(s + b);

}

Fig. 21. JAvA : Extending the “logic”

7.1.1 More about Specifying Properties The new specification methods
are shown in figure 21. The method eventually is like assert except that it is
supposed to state a property which is specified to hold eventually — in the future.
Hence, if one in the main program (the main method) writes:

Verify.eventually(x == 0)

then this states that in all traces, eventually x == 0, just as if we had written
“<> (x==0)" in SPIN. The body of this method is “return true” since JAvVA
requires a function to contain a return statement of some kind. Basically, a call
of the method just represents an information to the translator to generate an
LtL formula to be verified in SPIN. Note how we keep within the JAvA language
for writing specifications.

27

The method write simply writes the contents of a variable, boolean in this
case. There should possibly be many such — for different types of values. The
idea here is that calls of this method can be translated into print statements
in SPIN, which print on the Message Sequence Charts during simulations, for
example, simulations of error traces. This gives very readable graphical output
which is easy to follow.

7.1.2 The JAvA Program Now to the JAVA program itself, see figure 22. It
shows two how two threads, al and a2 of types Agent1 and Agent2, are spawned,
which both update the “global” variables defined in the class Status. Note that
these variables are all static, meaning that they are associated with the class,
and not with objects of that class. That is, there is only one copy of these values,
common for all objects. One can refer to the static variables by just prefixing
with the class name as in “Status.a”, without creating objects.

Agent1 basically assigns true to Status.a, and then suspends itself. Agent?2
assigns true to Status.b and then resumes Agent1. From the main method it
can be seen how the Agent?2 thread is initialized with the Agent1 thread (al) as
parameter. When Agent1 has been resumed, it finally updates Status.c.

The main method contains a call of Verify.eventually and a call of
Verify.assert. These properties state, respectively, that “eventually Status.c
will become true’ (meaning that Agentl terminates), and “whenever Status.c
is true, so is Status.a and Status.b” (meaning for example that Agent2 has
executed — to resume Agent1).

28

class Status{
public static boolean a = false;
public static boolean b
public static boolean c

};

false;
false;

class Agentl extends Thread{
public void run(){
Status.a = true;

Verify.write("a == ",Status.a);
suspend () ;

Status.c = true;

Verify.write("c == ",Status.c);}

}s

class Agent2 extends Thread{
Thread other;

public Agent2(Thread other){
this.other = other;};

public void run(){
Status.b = true;
Verify.write("b == ",Status.b);
other.resume();}

};

class Main{
public static void main(String[] args){
Verify.eventually(Status.c);
Agentl al = new Agentl();
Agent2 a2 = new Agent2(al);

al.start();

a2.start();

Verify.assert("[1(c => a & b)",
IStatus.c || (Status.a & Status.b));};

Fig. 22. JAvA : An example program

29

7.1.3 More About the Specification Note that the call of Verify.assert
occurs after the start of all threads. This position of the call in fact turns it
into an invariant to be checked since it may get executed at any point in time
during the whole programs execution. Hence, general invariant properties may
be formulated as assertions written at the end of the main method. The call of
Verify.eventually is also strategically positioned before any other statement,
simply to make it cover all traces from their beginning. This will be discussed
in some more detail in section 14.

When executing this program we will see the output:

a == true
b == true
c == true

Generally, on a typical JAVA platform this will be the output: first Agent1 will
execute, and suspend itself; then Agent2 will execute, and and resume Agenti;
then Agent1 will continue, and terminate; (and then the assertion in the main
method will be executed). That is, many JAVA platforms do not interleave pro-
cess execution unless forced to by explicit statements like for example yield.
Since the Agent1 thread is started first, it will on our Sun stations execute first
until it suspends itself. This is not the case on all platforms. To quote [2]:

The Java runtime environment does not implement (and therefore does
not guarantee) time-slicing. However, some systems on which you can
run Java programs do support time—slicing. Your Java programs should
not rely on time-slicing as it may produce different results on many
systems.

This in fact means that a JAVA program cannot be tested fully on for ex-
ample a non-time-sliced platform. In the above case, all tests will show that
the Status.c variable eventually becomes true. This is, however, not the case
on a time-sliced platform. The reader may try to guess why. In section 7.2.5 it
will be explained how SPIN disproves this eventually—property for the translated
version, giving an error trace demonstrating what goes wrong. The point here
is, that the SPIN translation will/ model full time-slicing.

7.2 Translation

7.2.1 General Ideas A SPIN proctype declaration can be suffixed by an op-
tional "provided (bool_exp)” clause to constrain its execution to those global
system states for which the corresponding expression (the expression can contain
global references, or references to the process’s _pid) evaluates to true. We shall
use this construct to model suspension and resumption. We introduce an array
which maps each process identifier to a boolean, being true if that process has

30

been suspended. The provided clause for a process is then the falsity of this array
applied to the corresponding process id. This translation has a serious drawback
in that it prevents the use of SPIN’s partial order reduction algorithm, but at
the current moment we don’t have a better suggestion. If a program contains
no thread suspension one does of course not need to introduce these provided
clauses and the partial order reduction can in this (hopefully most typical) case
be applied.

Before we proceed with the more important part of the translation, let us
introduce the standard types and constants, see figure 23. The failure will be
used as the last else branch in conditional statements. The write macro writes
the contents of a variable. Note that the x in the text string also gets replaced
at macro expansion time.

type Index = byte;

type ClassName = Status,Agentl,Agent2,Main;
typedef ObjRef{ClassName class; Index index};
type ProcIld = byte

#define false O

#define true 1

#define undefined O

#define MAX b5

#define this _pid

#define failure else —-> assert(false)

#define write(x)
printf ("MSC: x == ju",x)

Fig. 23. SPIN : Some types etc.

Figures 26 and 27 show the translation of the classes Agent1 and Agent2,
and in particular the definition of the typedefs Agent1 Class and Agent2 Class,
which both include a field named PID, representing the process identification
(generated by SPIN) of the process associated with an object. The macros
for suspension and resumption of processes in figure 24 access this field. The
suspended array maps process identifiers to booleans (true, if suspended). The
macro set_PID assigns a value to the PID field. The macro running will be used
as the boolean expression in the provided clauses. The macros suspend and
resume basically just assigns, respectively, true and false to the relevant pro-
cess ids in the suspended array. these process ids are looked up in the data area
associated to the object being suspended/resumed. The start method is used
to start threads atomically such that the process id can be stored safely in time.

31

ProcId suspended[MAX];

#define set_PID(obj,value)
if
: obj.class Agentl -> Agentl_0bj[obj.index].PID = value
:: obj.class == Agent2 -> Agent2_0bj[obj.index].PID = value
fi

#define running
!suspended[this]

#define suspend(obj)
if
:: obj.class == Agentl ->

suspended [Agent1_0bj [obj.index] .PID] = true
:: obj.class == Agent2 ->
suspended [Agent2_0bj[obj.index] .PID] = true
: failure
fi
#define resume(obj)
if
:: obj.class == Agentl ->
suspended [Agent1l_0bj[obj.index] .PID] = false
: obj.class == Agent2 ->
suspended [Agent2_0bj [obj.index] .PID] = false

:: failure
fi

#define start(thread,obj)
atomic{
pid = run thread(obj.class,obj.index) ;
set_PID(obj,pid)}

Fig. 24. SPIN : Suspending and resuming operations

7.2.2 Translation of Class Status Note that all variables in the Status
class are static, which means that they occur in one copy each, rather than
being copied for each new object. This means that we only need to define one
data area as done in figure 25.

7.2.3 Translation of Class Agentl The translation of class Agent1, see
figure 26 follows the standard pattern, except for the provided clause. The
translation of this example did in fact lead to the discovery of a bug in SPIN (has
been corrected by Gerard Holzmann in the new soon coming version) where an

32

typedef Status_Static{
bool a = false;
bool b = false;
bool ¢ = false;

+s

Status_Static Status_Static_Area;

Fig. 25. SpIN : Translation of class Status

object of type ObjRef could not be passed as a parameter to a process. Therefore,
in this example, we transfer its components class and index, and immediately
combine them into obj, the object which the “thread” is part of. Hence, when

the process executes suspend (obj), it suspends itself.

typedef Agentl_Class{ ProcId PID }; Agentl_Class Agentl_0bj[MAX];
Index Agentl_Next = 0;

#define Agentl_constr(obj)
ObjRef obj;
obj.class = Agenti;
atomic{obj.index = Agentl_Next; Agentl_ Next++}

proctype Agentl_Thread(ClassName class; Index index)
provided (running)

{ ObjRef obj;
obj.class = class;
obj.index = index;
Status_Static_Area.a = true;
write(Status_Static_Area.a);
suspend (obj) ;
Status_Static_Area.c = true;
write(Status_Static_Area.c);

Fig. 26. SpIN : Translation of class Agent1

7.2.4 Translation of Class Agent2 The translation of class Agent2, see
figure 27 follows the same pattern, except now the thread suspends “the other”
thread, the Agent1 thread stored in the variable other given as parameter to
the constructor.

33

typedef Agent2_Class{
ProcId PID;
ObjRef other
}i
Agent2_Class
Agent2_0bj[MAX]; Index Agent2_Next = 0;

#define Agent2_get_other(obj)
Agent2_0bj[obj.index] .other

#define Agent2_set_other(obj,value)
Agent2_0bj[obj.index] .other.class = value.class;
Agent2_0bj[obj.index] .other.index = value.index

#define Agent2_constr(obj,other)
ObjRef obj;
obj.class = Agent2;
atomic{obj.index = Agent2_Next; Agent2_ Next++};
Agent2_set_other(obj,other)

proctype Agent2_Thread(ClassName class; Index index)
provided (running)

{ ObjRef obj;
obj.class = class;
obj.index = index;
Status_Static_Area.b = true;
write(Status_Static_Area.b);
resume (Agent2_get_other(obj));

Fig.27. SPIN : Translation of class Agent2

7.2.5 Translation of Class Main The Main method constructs the two thread
objects and starts them, see figure 28. Since the assert statement occurs at the
end, it will represent an invariant property to be verified, since its execution may
occur at any time! after the start of the processes. Hence, it must be true at any
time.

The eventuality property of the JAVA program (that Status.c eventu-
ally becomes true) must be formulated as an LTL formula of the form
“<>Status Static Area.c” (using a macro name though for the expression fol-
lowing “<>” as required by SPIN). As it turns out, the assertion is true (whenever
c is true also a and b are true), while the LTL eventually property is not true:
in some traces the variable c is never set to true. SPIN returns an error trace
where the Agent2 thread a2 executes the resume method to resume the Agent1
thread al before! this suspends itself.

34

init{
ProcId pid;
Agent1_constr(al);
Agent2_constr(a2,al) ;
start (Agentl_Thread,al);
start (Agent2_Thread,a2) ;

assert (!Status_Static_Area.c ||
(Status_Static_Area.a & Status_Static_Area.b));

Fig. 28. SPIN : Translation of class Main

7.3 Alternative Translations

In the translation above an array (suspended) maps a process identifier to the
boolean value true in case that process has been suspended. An alternative is
to use an array to model a list of all suspended processes, and then look through
the list for each process execution:

member (_pid, suspended)

where member performs a scan of the list. Alternatively, the list may be imple-
mented as a channel, and member may then simply be implemented as:

suspended??[eval (_pid)]

being true if _pid is in the channel.

Using an array as done in the presented translation appears to be the most
time efficient solution. One must remember that this check has to be performed
for each execution of a process being associated with a provided clause. The
drawback of the array solution is that one needs an entry in the array for each
possible process identifier in the program. This may require more space than the
list solutions, where one just needs to store exactly the suspended processes.

35

8 Stop, Join, isAlive

The stop method in the Thread class kills a thread by throwing a ThreadDeath
exception inside the thread that is caught at the outer level of the thread, causing
its death, unless the exception is caught by the user defined application program
inside the thread. The isAlive method returns true if the thread has started
and has not been stopped. Note that isAlive hence is not true before start
has been called on that same object. The join method returns if the object is
not alive. That is, when isAlive is false. Hence, a join executed on a thread
that has not yet been started will return because isAlive is false.

When a thread is stopped it may be in the middle of executing synchronized
methods on several different objects. Each of these objects are locked to prevent
other threads from executing synchronized methods in parallel. The locks on
these objects have to be released as a result of the call of stop.

8.1 Example JAVA Program to be Translated

8.1.1 The JAVA program the JAVA program to be translated is shown in
figure 29. The class 0bj contains a collection of static variables, hence global to
the program. The first three (data, job and terminator) will be assigned object
values, the objects of the program. Two of these objects (job and terminator)
are the treads of the program. This style of defining all objects globally as static
variables is an alternative to creating them inside the main method and then
passing them around as parameters as we have seen in previous examples (see
for example figures 16 and 17).

The Data class (of which Obj.data will be an instance) contains two syn-
chronized methods work and finalize. The work method performs an infinite
loop, and hence will never terminate unless the thread that calls work is stopped
violently from outside, for example by a call of stop. Now, the Job thread does in
fact call work while the Stop thread stops the Job thread (0Obj.job). The main
method starts the Job and Stop threads Obj . job and Obj.terminator, and then
waits to join the 0Obj . job thread. The join succeeds when the Obj.terminator
thread stops the 0bj. job thread. The finalize method is called at the end to
demonstrate that in fact the lock put on the Obj.data object by the Obj. job
thread has been released.

36

class 0bj{

public static Data data;

public static Job job;

public static Stop terminator;

public static boolean finalized = false;

}s

class Dataf{
public synchronized void work(){
while (true) {/* do some job*/};

}

public synchronized void finalize(){
Obj.finalized = true;
b
}

class Job extends Thread{
public void run(){
0bj.data.work() ;
}s
}s

class Stop extends Thread{

public void run(){
Obj.job.stop();
Verify.eventually(0Obj.finalized);
b
}s

class Main{
public static void main(String[] args){

Obj.data = new Data();
Obj.job = new Job();
0Obj.terminator = new Stop();
Verify.eventually(Obj.finalized);
Obj.job.start();
0bj.terminator.start();

try{0bj. job. join() ; }catch(InterruptedException e){};
Verify.assert("job has stopped",!0bj.job.isAlive());

Obj.data.finalize();

Fig. 29. JAvA : An example program

37

8.1.2 The Specification The program contains three properties we want to
prove, two of which occur in the main method and one of which occur in the run
method of the Stop class. The property:

Verify.eventually(Obj.finalized)

in the main method states that the main program will always reach its end and
call the finalize method. This requires that the join call always succeeds and
terminates. The assert statement in the main method states that after the join,
the 0bj . job thread is no longer alive. The third property:

Verify.eventually(Obj.finalized)

in the run method of the Stop class states that once the Obj . job thread had been
stopped, eventually the main method will join, and the finalize method will
be called, updating 0bj.finalized to true. This is an example of a LTL prop-
erty embedded “deep” inside a program, and hence not at the beginning of the
program (as the first thing in the main method as the other eventually-property
above). The semantics is therefore different in the sense that this property should
only hold “from this point on”. That is, only when we have really stopped the
Obj.job thread we can be sure that the join in the main method later will
be executed. As we shall see, only the latter embedded LTL property and the
assert property hold, whereas the first eventually-property in the main method
does not hold. That is, not in all execution traces will finalize eventually be
called.

8.2 Translation

8.2.1 General Ideas The translation is based on introducing a new boolean
STOP field in the data area of a thread object, initially false, and wrapping an
unless statement around the run-code of the thread, which exits as soon as the
STOP field gets the value true. The STOP field is assigned the value true by the
stop method. Note that the stop method in JAVA in fact throws a ThreadDeath
exception. Our translation will not reflect this fact, since we are not yet decided
upon a satisfactory translation of exceptions. Once we know how to translate
exceptions correctly, the translation of stop must be changed accordingly.

In a addition to the STOP field, a PID field will contain the process identifi-
cation of the object (if it is a thread) as demonstrated in section 7. This field is
initially null. Hence isAlive is true whenever PID is different from null (the
thread has been started) and STOP is false.

Recall further that in order to model synchronized methods we also intro-
duce a LOCK field in the data area of those objects having synchronized methods.
This field will point to the thread currently locking the object. When a thread
is stopped, all objects that it has locked in this way must be released. For this

38

purpose a list valued variable (a channel in fact) named LOCKING is furthermore
introduced in each thread (proctype), which contains references to those ob-
jects the thread has locked. When the thread is stopped abnormally this list is
emptied, and each of its objects is unlocked.

Figure 30 introduces the standard collection of types and constants. The only
new thing is the definition of the macro 1ist as a different name for chan. It will
be used for defining “variables” intended to hold lists of elements. This technique
was also used in [3].

type Index = byte;

type ClassName = {0bj,Data,Job,Stop,Main};
typedef ObjRef{ClassName class; Index index};
type ProcId = int

#define false 0

#define true 1

#define undefined O

#define MAX 5

#define null -1

#define this _pid

#define failure else -> assert(false)
#define list chan

Fig. 30. SPIN : Some types etc.

Figure 31 shows the definitions of macros needed for locking and unlocking
objects having synchronized methods, in this case only objects of the class Data.
The macros get_LOCK and set_LOCK just reads and writes to the LOCK field as
we have seen before.

The macros add_LOCKING, remove LOCKING and clear LOCKING are used to
guarantee that locked objects get unlocked in case of a violent stop. The macro
add_LOCKING adds an object being locked to the list valued LOCKING variable local
to each thread proctype as wee shall see, and remove LOCKING removes this lock
after the synchronized method terminates normally. In case of an abnormal stop,
the macro clear LOCKING goes though all the locked objects and unlocks them,
one by one.

The macros lock and unlock locks and unlocks a single object in the normal
situation. Each of these operations requires an update of the LOCK field in in
object and of the LOCKING field in the calling thread.

Figure 32 shows the macros needed for stopping and joining threads. The first
four macros just access the fields PID and STOP. The definitions of isAlive, join,
and stop are self-explanatory, while the abort macro needs a bit of explanation.

39

#define get_LOCK(obj)
Data_0bj[obj.index] .LOCK

#define set_LOCK(obj,value)
Data_0bj[obj.index] .LOCK = value

#define add_LOCKING(obj)
LOCKING!obj

#define remove_LOCKING(obj)
LOCKING??(eval (obj.class) ,eval(obj.index))

#define clear_LOCKING
ObjRef locked_obj;
do
:: LOCKING?(locked_obj) ->
set_LOCK(locked_obj,null)
: empty(LOCKING) -> break
od

#define lock(obj)
atomic{
get_LOCK(obj) == null ->
set_LOCK(obj,this) ;
add_LOCKING (obj) }

#define unlock(obj)
atomic{
set_LOCK(obj,null);
remove_LOCKING(obj)}

Fig. 31. SpIN : Synchronization locking

This macro is called in a thread when it becomes stopped and constitutes the
exit-condition in the unless construct that is wrapped around the run—code.
Hence, it gets executed as soon as the guard get_STOP(obj) evaluates to true.
Thereafter it clears all locks owned by the thread.

40

#define set_PID(obj,value)
if
:: obj.class == Job -> Job_0Obj[obj.index].PID = value
:: obj.class == Stop -> Stop_0bjlobj.index].PID = value
:: failure
fi

#define get_PID(obj)
(obj.class == Job -> Job_0bj[obj.index].PID
(obj.class == Stop -> Stop_0bjl[obj.index].PID : undefined))

#define set_STOP(obj,value)
if
:: obj.class == Job -> Job_0Obj[obj.index].STOP = value
: obj.class == Stop -> Stop_0bjlobj.index].STOP = value
: failure
fi

#define get_STOP (obj)
(obj.class == Job -> Job_0bj[obj.index] .STOP
(obj.class == Stop -> Stop_0Obj[obj.index].STOP : undefined))

#define isAlive(obj)
(get_PID(obj) != null & get_STOP(obj) != true)

#define join(obj)
lisAlive(obj)

#define stop(obj)
set_STOP(obj,true)

#define abort(obj)
atomic{get_STOP(obj); clear_LOCKING}

#define start(thread,obj)
atomic{
pid = run thread(obj.class,obj.index);
set_PID(obj,pid)}

Fig. 32. SPIN : stop, isAlive and join

41

8.2.2 Translation of Class 0bj All variables in the Obj class are static,
which means that they occur in one copy each, rather than being copied for each
new object. We model this differently than in figure 25 due to an error in the
SPIN model checker (the type checker protests when a nested record is sent over
a channel). Hence, in figure 33 we instead introduce a variable for each field in
the class.

ObjRef Obj_Static_data;

ObjRef Obj_Static_job;

ObjRef Obj_Static_terminator;

bool 0Obj_Static_finalized = false;

Fig. 33. SpIN : Translation of class Obj

8.2.3 Translation of Class Data The translation of this class follows the
same pattern as in section 5 where each method M is mapped into two macros:
CM_code and C_M where C is the class name. Observe that the constructor is
called Data new instead of Data constr. The difference between this an earlier
ones is that it does not contain the declaration “ObjRef obj” since it is supposed
to be called in a context where the object variable has already been declared. It
is the difference between the JAVA statements:

Data data = new Data()

being mapped into a call of Data_constr(data) (but it does no occur in this
program) and

Data data;
data = new Data();

being mapped into a separate declaration of data and then a call of
Data_new(data).

42

typedef Data_Class{
ProcId LOCK = null

}s

Data_Class Data_0bj[MAX];

Index Data_Next = 0;

#define Data_new(obj)
obj.class = Data;
atomic{obj.index = Data_Next; Data_Next++}

#define Data_work_code(obj)
do
:: skip
od

#define Data_work(obj)
if
: get_LOCK(obj) == this ->

Data_work_code (obj)

:: else ->
lock(obj);
Data_work_code (obj) ;
unlock(obj)

fi

#define Data_finalize_code(obj)
0bj_Static_finalized = true

#define Data_finalize(obj)
if
: get_LOCK(obj) == this ->

Data_finalize_code(obj)

1 else ->
lock(obj);
Data_finalize_code(obj) ;
unlock(obj)

fi

Fig. 34. SPIN : Translation of class Data

43

8.2.4 Translation of Class Job In the translation of class Job, figure 35, we
see the introduction of the fields PID and STOP. The Job_Thread proctype has two
parameters due to the bug discovered in SPIN and as explained in section 7.2.3.
The variable (channel) LOCKING is introduced here to contain references to all
locked objects, to be released upon abnormal termination (stop). Note how the
run-code is surrounded by an unless construct conditioned by the abort (obj)
call. That is, as soon as the abort code gets executable the call of Data work
will terminate, and the abort code gets executed. In case of normal termination
the STOP field must be set to true as the last action.

typedef Job_Class{
ProcId PID = null;
bool STOP = false

};

Job_Class Job_0bj [MAX];

Index Job_Next = 0;

#define Job_new(obj)
obj.class = Job;
atomicobj.index = Job_Next; Job_Next++

proctype Job_Thread(ClassName class; Index index){
ObjRef obj;
list LOCKING = [MAX] of {ObjRef};
obj.class = class;
obj.index = index;
{Data_work(Obj_Static_data)}
unless
{abort (obj) };
set_STOP (obj,true) ;

Fig. 35. SPIN : Translation of class Job

8.2.5 Translation of Class Stop The translation of class Stop is shown
in figure 36. The new thing to observe here is the declaration of the variable
JOB_STOPPED (initially false), and the assignment of true to it at the position
where the eventually property:

Verify.eventually(Obj.finalized)

occurs in the run method of the JAVA class Stop. The eventually-property is
then translated into:

44

[1 (JOB_STOPPED => <>0bj_Static_finalized)

reading as follows: “it is always the case that whenever the variable JOB_STOPPED
becomes true, then eventually the variable 0bj_Static_finalized becomes true”.
In order for this property to hold, it must hold for all traces (this is the semantics
of LtL), and it must hold from the beginning (first state) of each of these traces
— and it does. This is a general way to translate embedded LTL in JAVA. For
each such formula one introduces a variable that becomes true at that point,
and then the translated formula is guarded with this variable. In a fully general
translation, one needs such a variable for each object, since the property must
be true for all objects. Hence, such boolean flags must be part of the data area
associated with objects.

typedef Stop_Class{
ProcId PID = null;
bool STOP = false
}s
Stop_Class Stop_0bj[MAX];
Index Stop_Next = 0;

#define Stop_new(obj)
obj.class = Stop;
atomic{obj.index = Stop_Next; Stop_Next++}

bool JOB_STOPPED = false;

proctype Stop_Thread(ClassName class; Index index){
ObjRef obj;
list LOCKING = [MAX] of {ObjRef};
obj.class = class;
obj.index = index;
{
stop(Obj_Static_job);
JOB_STOPPED = true;

}

unless
{abort (obj) };
set_STOP(obj,true) ;

Fig. 36. SPIN : Translation of class Stop

8.2.6 Translation of Class Main The main method in the JAVA program con-
structs the three objects 0Obj.data, Obj.job and 0Obj.terminator. This trans-

45

lates into calls of the macros Data new, Job_new and Stop_new which we recall do
not declare these objects as they have already been declared (as static variables
in the class 0bj). Note that in the JAVA program the call of join is protected
by a try ... catch construct. This is not translated here as we have not yet
found a fully satisfactory translation of exceptions.

init{
ProcId pid;
list LOCKING = [MAX] of {ObjRef};
Data_new(0bj_Static_data);
Job_new (Obj_Static_job);
Stop_new(Obj_Static_terminator) ;
start (Job_Thread ,0bj_Static_job);
start (Stop_Thread,Obj_Static_terminator);
join(0Obj_Static_job) ;
assert(!isAlive(Obj_Static_job));
Data_finalize(Obj_Static_data);

Fig. 37. SPIN : Translation of class Main

When applying the SPIN modelchecker, the assert statement is verified to
hold. The eventually-property occurring in the main method of the JAVA pro-
gram, figure 29 is translated into the LTL following formula (ignoring here that
all propositions have to be macro calls):

<> 0Obj_Static_finalized

That is, for all traces of the program, eventually the variable
Obj_Static_finalized becomes true. SPIN rejects the property as being true
and returns an error trace illustrating a situation where the terminator never
kicks in and stops the job thread. Hence, the job thread loops forever. This in
fact is also the effect of running the JAVA program on our platform since the
terminator thread is started after the job thread, meaning that it will never
get a time slice.

46

9 Yield and Sleep

The yield () method stops executing a thread and returns control to the sched-
uler. So if there is another runnable task at the same or higher priority, it will
be run. This is not quite a no-op in SPIN, because a no-op would allow the same
thread to continue running, whereas yield () enforces a switch. So an error trace
where the same thread kept running after calling yield() might not actually
occur in the running of the actual JAVA program; this would be a false negative.

The sleep(int millisecs) method suspends the thread for a given amount
of time, at which point it becomes runnable again. We haven’t thought signif-
icantly about modeling real-time in SPIN, so sleep and yield would have the
same translation.

47

10 Data Structures

JAVA has vectors, etc. We haven’t thought much about them; they can perhaps
be modeled using channels as in the RA Report.

48

11 Expressions

A statement such as

is atomic in SPIN but not in JAVA. This can be modeled to some extent by a
transformation that introduces temporary variables, e.g. For example, the JAvA
statement:

a=bx*xc+d

can be translated into (using temporary variables t1 ...t5):

tl = b;
t2 = c;
t3 = t1 * t2;
t4 = d;
t5h = t3 + t4;
a = t2

We are not sure whether the order of evaluation of operations like + is pre-
defined in JAvVA. So that means that whichever order we decide to introduce,
temporaries may not model a particular JAVA compiler. So it is conceivable that
some interleaving allowed by JAVA won’t be possible in the translation, and that
only that interleaving would cause a bug.

A JAavA expression tree could instead be translated to a data flow model,
where each node in the tree is represented by a process that accepts inputs from
children nodes and passes a value to its parent. Although it would capture all
possible interleavings, it would be expensive.

49

12 Exceptions

A preliminary thought is to have a global variable that holds the exception object
that has been raised. Translate "try...catch” into an "unless” that tests the
type of exception to see if it should catch it.

A major issue here is that in case of nested unless statements in SPIN, the
outermost ”"unless” will fire. This is the opposite of JAVA where the ”lowest”
applicable ”try” captures an exception.

50

13 Priorities

The semantics of priorities in JAVA seems to be as follows. There is assumed to
be a scheduler of threads. Whenever the scheduler has a choice of which thread
to run, it chooses a highest priority thread. A thread’s priority can be set using
the setpriority method of the Thread class.

The priority of a thread could be modeled as another field of the typedef
representing the thread. But how can the scheduler be modeled? A solution is
to intersperse between every pair of statements a statement that blocks if there
is a higher-priority thread that can be run. However, this solution is somewhat
involved.

As the Mars pathfinder bug demonstrated, real-time starvation can occur
in systems of concurrent processes with priorities. By "real-time starvation” we
mean that process A prevents process B from achieving its real-time deadlines
because A’s priority is higher. It is worth thinking about whether this sort of
thing can be modeled in PROMELA.

We need a provided clause that blocks unless the priority of the process is
the highest of the runnable processes. How do we determine the highest priority
runnable process? We could iterate through the runnable thread objects, finding
the maximum priority. Is it possible to tell if a process is runnable? One can check
the STOP field of the corresponding thread object, but how do we determine if a
process is, say, waiting on a synchronized method?

51

14 Specifications

In this section we shall elaborate on the logic for specifying the properties of JAVA
programs. We have already used a certain style of specification in the previous
JAVA programs, and in this section we shall outline the full logic together with
an outline of its semantics in terms of its translation into SPIN’s LirL. Our main
suggestion is not to extend the JAVA language but to express temporal properties
as calls to methods defined in a special temporal logic class, all of whose methods
are static (hence one does not need to instantiate the class to objects before
calling the methods).

The first section elaborates in the scheme already used in previous sections.
The second section discusses a slightly different approach (although basically
the same solution) where one can avoid prefixing temporal operators with class
names by using inheritance instead. Then follows an idea based on specifying
properties as declarations of methods instead of in terms of statements. The
last section shortly discusses completely alternative solutions, one based on ex-
pressing specifications as comments and one simply by extending the syntax of
JAVA. Neither of these two solutions are recommended for the moment. Even
comments need a special parser since JAVA parsers just ignore the contents of
comments.

14.1 The Verify Class

14.1.1 Syntax and Outline of Semantics Figure 38 shows the class Verify
which provides a range of temporal operators. In fact, the expressive power of this
“language” is the same as that of SPIN’s LTL. Each method is defined as returning
a boolean value, except the assert method. This allows nested formulae as can
be seen in figure 39 where the Verify class is applied. The methods just return
true (except assert) since there is no simple way to calculate their result within
JAVA and since their only purpose hence is to inform the translator about which
LrL properties to generate for the SPIN program resulting from the translation.
Only calls of these methods will result in translation.

Associated with each method is a comment explaining how a call of this
method is translated into LTL. The translation is of course recursive in case of
nested formulae. Some of the methods are just introduced to make life easier, like
for example response. That is, the second formula in figure 39 can be written as
“Verify.response(A,B)”. Note that implication is not part of JAVA’s operators
and hence we must use the rule of logic: (p = q) = ((—p) V ¢). Alternatively, the
method implies has been introduced.

14.1.2 More about Semantics The formulae in figure 39 all occur at the
start of the JAVA programs main method. This means that they can be trans-
lated directly into LTL formulae as indicated by the comments in figure 38. This

52

class Verify{
public static void assert(String s, boolean p){
if (!p) System.out.println("assertion " + s + " broken“);};

/* p */

public static boolean always(boolean p){return true;};

/% [p */

public static boolean eventually(boolean p){return true;};
/* <>p */

public static boolean until(boolean p, boolean q){return true;};
/* pUq */

public static boolean response(boolean p, boolean q){return true;};

/* [I(p -> <>q) */

public static boolean precedence(boolean p, boolean q, boolean r)
{return true;};

/* [I(p -> (q U) */

public static boolean implies(boolean p, boolean q){return true;};

/* p => q */

Fig. 38. JAvA : The Verify class

is because an LTL formula in SPIN is true of a program if it is true from the
beginning! (first state) of all traces of the program. These formulae are, how-
ever, also allowed to occur embedded inside JAVA code, and in that case their
translation is a little bit more subtle. Generally, an embedded call of a Verify
method translates into the assignment of true to an automatically generated
system variable (initially false), and to the generation of an LTL formula which
is guarded by the truth of that variable. Suppose for example the following piece
of JAVA code “deeply” nested inside a JAVA program:

Verify.eventually(P);
This will then translate into a SPIN program of the form:

VERIFY_VARIABLE = true

53

class Main{
public static void main(String[] args){
boolean A = false;
boolean B = false;

Verify.eventually(A);
Verify.always(!'A || Verify.eventually(B));

A
B

true;
true;

Fig. 39. JavaA : Using the Verify class

and then the LTL formula (where P’ is the translation of P):
[1 (VERIFY_VARIABLE -> <>P’)

The translation is even more subtle than that. If the formula occurs inside
a method of a class, then the formula must be true for all objects of that class.
Hence, such a VERIFY _VARIABLE must be introduced in the data area for the
objects. Furthermore, properties should be interpretated relative to the lifetime
of the objects. That is for example, a property Verify.always(P) should be
true if it is true during the lifetime of the object. That is, it should be translated
into something like (note that the until operator U in SPIN is strong meaning
that its second argument must become true eventually, which need not be the
case for STOP):

[1(VERIFY_VARIABLE -> (([1P) or (P U STOP)))

That is, the property P must be true now and until the object stops, here ignoring
the fact that the VERIFY_VARIABLE and the STOP variable are part of the data
area of the object. A property of the form Verify.eventually(P) is translated
into:

[1 (VERIFY_VARIABLE -> (!STOP U P))

That is, eventually P must become true, and in the meantime STOP must be false,
meaning that the object is alive. Hence, P becomes true before the object dies.
At least this must be the case for formulae that contains variables purely local
to the object. If on the other hand the formula contains variables global to the
object, or a mixture of global and local, then things get even more subtle. In fact,
without restrictions the translation may become quite complicated, and perhaps

54

not even feasible because SPIN’s LTL formulae have to be defined statically, while
object creation and death is dynamic. A lot to think about here.

Note by the way, that if an assert statement occurs at the end of the main
method of the JAVA program it will function as a program invariant to be always
true. This is because the SPIN model checker will do its best to falsify the asser-
tion by executing it in all of the program’s states. Recall that the main method
becomes a process running in parallel with all the other spawned processes.

14.1.3 Correspondence to LTL. We mentioned that the logic presented here
is as expressive as SPIN’s LTL. We can demonstrate this by showing how LTL
formulae are translated into our logic. This is shown in table 40.

Nr.JLrL [Java Logic |

1 |0p always(p’)

2 |<p eventually(p’)
3 |[pUq |until(p’,q’)
4 |p->q|!'p’ Il q’ or
implies(p’,q’)
p and qp’ & q’
porglp’ Il g

7 |not p |[!p’

[

[«

Fig. 40. JAvA : Translating LTL into JAvVA logic

The propositional LtL formulae 5 — 7 are translated as indicated in the
table unless they occur at the outermost level. Recall that only calls of Verify
methods will be translated into L'rL. Hence, if propositional operators occur at
the outermost level they must either be embedded in an assert statement, or
one has to introduce verify methods for and, or and not. For example, the
following three groups of formulae would state the same thing (p holds now and
q holds eventually):

Verify.and(p,eventually(q));

Verify.assert(p);
Verify.eventually(q)

Verify.assert(p & eventually(q))

There is room for language debates here.

55

14.2 Interpretation of Verifications

An obvious question is how to interpretate verification results. That is, what
does it imply that a formula is verified to hold, respectively not hold in the
translated PROMELA program? We shall state an informal theorem answering
these questions. We shall (here informally) assume that LTL (Linear Temporal
Logic) formulae can be used to state properties about programs in both lan-
guages, assuming a satisfaction relation “=” between programs and formulae
(one for each language). Hence, p |= 1 means that program p satisfies formula

b

Theorem 1 Interpretating verification results. Assume a JAVA program J
and its PROMELA translation P.

Then the following holds for any LTL formula 1:

P =14 implies J = ¢ (1)

The following does however not hold:

~(P = ¢) implies =(J |=) (2)

Informal Proof:

Proof of 1: The PROMELA program P allows the same or more interleaving than
the JAVA program J. Hence, the program J denotes a set of traces being a subset
(in some interpretated way) of the set of traces denoted by P. Furthermore, an
LTL formula is true for P if it is true for oll traces of that P. Hence it will also
be true for the traces of J. Proof of (2): Consider a property 1 that does not
hold for P because it does not hold for a certain single trace T. Since the set of
traces denoted by P may be a strict superset of the set of traces denoted by J,
the latter may not include 7.

Statement (1) of the theorem basically states that if a property is proved
to hold for the translated PROMELA program then it also holds in the source
Java program. That statement (2) does not hold means that an error trace
generated on the basis of a verification does not necessarily mean an error in
the JAVA program. This is because certain JAVA implementations do not support
implicit time-slicing. Put differently, the following does not hold: “J |= 4 implies
P |= 17, meaning that the JAVA program may have certain properties that the
PROMELA program does not. In general, however, if a property does not hold
in the PROMELA program it possibly represents a problem in the JAVA program
since programs should not rely on lack of time-slicing in the platform they run
upon.

56

14.3 Using Inheritance to Avoid Class Prefixes

If it becomes a goal to shorten temporal specifications, for example by avoiding
writing the Verify prefix to all calls of methods inside Verify then a solution
is to inherit these methods. There are basically two kinds of objects in JAVA
(seen from the current perspective): non-threads and threads. Hence, we define
the Verify class as before, but in addition we also define an extension of the
Thread class introducing exactly the same methods. This is illustrated in figure
41. Now we can inherit these two classes, Verify for the non-thread classes and
VThread for the thread classes, as shown in figure 42.

class Verify{
// ... as before
public static boolean eventually(boolean p){return true;};

}s

class VThread extends Thread{
// ... as before
public static boolean eventually(boolean p){return true;};

};

Fig.41. JAvA : The Verify class

57

class MyData extends Verify{
public void mymethod(){
boolean B = false;
eventually(B) ;
B = true;
}
}

class MyThread extends VThread{
public void run(){
boolean C = false;
eventually(C);
C = true;
}
}

class Main extends Verify{
public static void main(String[] args){

boolean A = false;
eventually(A);
A = true;
MyData mydata = new MyData();
mydata.mymethod() ;
MyThread mythread = new MyThread();
mythread.start() ;

Fig. 42. JAvA : Using the Verify class

58

14.4 Properties as Methods instead of as Statements

The solutions we have seen in the previous sections are based on expressing
properties as JAVA statements that “get executed”. The solution presented in
this section is based on specifying properties by declaring methods having names
that follow particular patterns. Hence, this solution keeps within the syntax of
JAvA without extending the language and without requiring a particular parser.

class Verify{
public static void assert(String s, boolean p){
if (!p) System.out.println(s + " broken");
}
}

class Counter extends Verify{
public int x = 0;
public void update(int dx){x = x + dx;};

public void invariant(){assert("inv",x>=0);};

public void pre_update(int dx)
{assert("pre_update",x + dx >= 0);}

public void post_update(int dx, int old_x){
assert ("post_update",x == old_x + dx);}

class Main{
public static void main(String[] args){
Counter counter = new Counter();
int old_x;

old_x = counter.x;
counter.pre_update(-1);
counter.update(-1);
counter.post_update(-1,0ld_x) ;
counter.invariant();

Fig. 43. Java : Using methods to state properties

59

In the JAVA program shown in figure 43 we see a Verify class which basically
just contains an assert method that will react appropriately if given a false
argument. In the Counter class is given examples of how property methods can
be defined, which not only will generate LTL formulae to be verified in SPIN,
but which also can be called in the program to test the program in a traditional
way. The invariant method defines an invariant we want to hold throughout
the lifetime of the object. The methods pre update and post_update define
the pre and post conditions for the update method. There are many ways this
can be expressed. In the presented solution a post-method takes as parameter
all old variables referred to. There are at least two ways an invariant can be
interpretated: either every use of the methods must be such that the invariant
holds, or alternatively, if the methods are used correctly wrt. their pre-conditions,
then the invariant can be guaranteed. One is a guide to the user, the other is a
guarantee that can be locally proven correct.

When executing this program it will print:

pre_update broken
inv broken

Note that in a concurrent setting one will want to state rely/guarantee con-
ditions, and this can be done in exactly the same way. However, in this case
the pre and post conditions will contain temporal formulae stating: “if it can
be relied upon that the environment satisfies the temporal formula P then this
method (object) can guarantee the behavior specified by temporal property Q.

14.5 Comments and Language Extension

The approach we have seen elaborated has used the JAVA language itself for
expressing temporal properties. Two alternatives is to either give specifications
as comments or simply to extend JAVA. This is illustrated in figures 44 and 45.
Of course in this case one can freely choose the syntax for formulae one wants,
for example one closer to SPIN’s LTL, even though that perhaps does not make
specifications more readable. Explanatory names may be an advantage after all.

60

class Main{
public static void main(String[] args){
boolean A;
boolean B;
VAL
specification{
[property 1] <>A;
[property 2] [1(A -> <>B)

=
I

= true;
true;

[o~]
n

Fig. 44. JAvA : Specifications as comments

class Main{
public static void main(String[] args){
boolean A;
boolean B;

specification{
[property 1] <>A;
[property 21 [1(A -> <>B)

}1
A = true;
B = true;

Fig. 45. JAavaA : Extending JAva

61

A The Producer/Consumer Example

/3 3k sk 3k 3k sk ok ok k ok 3k ok ok 3 ok 3k ok 3k ok ok %k k [/
/* System Definitions */
/3 3k sk 3k 3k 3k ok ok 3k ok 3k ok ok 3 ok 3k ok 3k ok ok k 5k [/

#define Index byte
#define ClassName byte
#define Producer O
#define Consumer 1
#define CubbyHole 2
#define Main 3

#define true 1
#define false O

#define undefined O
#define MAX 5

#define null -1
#define this _pid

#define failure assert(0)
#define continue 0

typedef ObjRef{ClassName class; Index index};

/***************************/

/* Synchronization Locking */
[Kook sk ok ok ok ko ok ok ok ok ok ok ok sk ok koK ok ok /

#define get_LOCK(obj)
CubbyHole_0bj[obj.index] .LOCK

#define set_LOCK(obj,value)
CubbyHole_0bj [obj.index] .LOCK = value

#define lock(obj)
atomic{
get_LOCK(obj) == null ->
set_LOCK(obj,this)}

#define unlock(obj)
set_LOCK(obj,null)

62

[/ kkok o ok sk ok sk ok ok ok ok ok ok /
/* Wait and Notify */
[Rk K ok ks ok okok o ok ok ok ok ok /

#define get_WAITING(obj)
CubbyHole_0bj[obj.index] .WAITING

#define set_WAITING(obj,value)
CubbyHole_0bj[obj.index] .WAITING = value

#define get_WAIT(obj)
CubbyHole_0bj[obj.index] .WAIT

#define wait(obj)
atomic{
unlock(obj);
set_WAITING(obj,get _WAITING(obj) + 1);
get_WAIT(obj)7continue;
lock(obj)}

#define notify(obj)
atomic{

if

:: get_WAITING(obj) > 0 —>
get_WAIT(obj)!continue;
set_WAITING(obj,get _WAITING(obj) - 1)

:: else -> skip

fi}

#define notifyAll(obj)
atomic{

do

:: get_WAITING(obj) > 0 ->
get_WAIT(obj)!continue;
set_WAITING(obj,get_WAITING(obj) - 1)

:: else -> break

od}

[Rk K ok kK ok okok o ok ok kokok ok /
/* class CubbyHole */
[Rk K ok kK ok okok o ok k Kok ok ok /

typedef CubbyHole_Class{

63

int LOCK;

int WAITING;

chan WAIT = [0] of {bit};

int contents;

bool available;
}s
CubbyHole_Class CubbyHole_0bj[MAX];
Index CubbyHole_Next = 0;

#define CubbyHole_get_contents(obj)
CubbyHole_0bj[obj.index] .contents

#define CubbyHole_set_contents(obj,value)
CubbyHole_0bj[obj.index] .contents = value

#define CubbyHole_get_available(obj)
CubbyHole_0bj[obj.index] .available

#define CubbyHole_set_available(obj,value)
CubbyHole_0bj[obj.index] .available = value

#define CubbyHole_constr(obj)
ObjRef obj;
obj.class = CubbyHole;
atomic{obj.index = CubbyHole_Next; CubbyHole_Next++};
set_LOCK(obj,null);
set_WAITING(obj,0);
CubbyHole_set_available(obj,false)

#define CubbyHole_get_code(obj,return_value)
do
:: CubbyHole_get_available(obj) == false -> wait(obj)
:: else -> break
od;
CubbyHole_set_available(obj,false);
notify(obj);
return_value = CubbyHole_get_contents(obj)

#define CubbyHole_get(obj,return_value)
if
:: get_LOCK(obj) == this ->
CubbyHole_get_code(obj,return_value)
:: else —>
lock(obj);
CubbyHole_get_code(obj,return_value);

64

unlock(obj)
fi

#define CubbyHole_put_code(obj,value)
do
:: CubbyHole_get_available(obj) == true -> wait(obj)
:: else -> break
od;
CubbyHole_set_contents(obj,value) ;
CubbyHole_set_available(obj,true) ;
notify(obj)

#define CubbyHole_put(obj,value)

if

:: get_LOCK(obj) == this ->
CubbyHole_put_code(obj,value)

i1 else =>
lock(obj);
CubbyHole_put_code(obj,value);
unlock(obj)

fi

[/ kksk sk ok ok ok ok ok sk ok ok ok ok ko ok /

/* class Producer */
/3 ke 3k sk ok sk sk e ok ok k ok ok ok /

typedef Producer_Class{
ObjRef cubbyhole
b
Producer_Class Producer_0bj[MAX];
Index Producer_Next = 0;

#define Producer_get_cubbyhole(obj)
Producer_0bj[obj.index] . cubbyhole

#define Producer_set_cubbyhole(obj,value)
Producer_0Obj[obj.index] .cubbyhole.class
Producer_0Obj[obj.index] .cubbyhole.index

value.class;
value.index

#define Producer_constr(obj,c)
ObjRef obj;
obj.class = Producer;
atomic{obj.index = Producer_Next; Producer_Next++};
Producer_set_cubbyhole(obj,c)

65

proctype Producer_Thread(ObjRef obj){

int i;
i=0;
do
1(i < 10) -> break
i< 10 ->
CubbyHole_put (Producer_get_cubbyhole(obj),1i);
i++

od

+s

/K% sk ok ok ok ok ok ok k ok o ok k sk ok ok /

/* class Consumer */
[FFkkokokok ok ok skokok ok ok /

typedef Consumer_Class{
ObjRef cubbyhole

b
Consumer_Class Consumer_0bj[MAX];
Index Consumer_Next = 0;

#define Consumer_get_cubbyhole(obj)
Consumer_0bj[obj.index] .cubbyhole

#define Consumer_set_cubbyhole(obj,value)

Consumer_0bj[obj.index].cubbyhole.class = value.class;

Consumer_0bj[obj.index] .cubbyhole.index = value.index

#define Consumer_constr(obj,c)
ObjRef obj;
obj.class = Consumer;
atomic{obj.index = Consumer_Next; Consumer_Next++};
Consumer_set_cubbyhole(obj,c)

proctype Consumer_Thread(ObjRef obj){
int value;
int i;
int received[10];
value = 0;
i=0;
do
'(i < 10) -> break
i< 10 ->

66

CubbyHole_get (Consumer_get_cubbyhole(obj) ,value);
received[i] = value;
i++

1'(i < 10) -> break

i< 10 ->
assert(received[i] == i);
i++

od;

}s

[Rk K kK Kok okok ok ok /

/* class Main */
/R ok ok ok ok /

init{
CubbyHole_constr(c) ;
Producer_constr(prod,c);
Consumer_constr(cons,c) ;
run Producer_Thread(prod);
run Consumer_Thread(cons) ;

67

References

1. Ken Arnold and James Gosling. The Java Programming Language. Addison Wesley,
1996.

2. Mary Campione and Kathy Walrath. The Java Tutorial, Object-Oriented Program-
ming for the Internet. Addison Wesley, 1996.

3. Klaus Havelund, Mike Lowry, and John Penix. Formal Analysis of a Space Craft
Controller using SPIN. Technical report, NASA Ames Research center, Moffett
Field, California, USA, August 1997.

4. Gerard Holzmann. The Design and Validation of Computer Protocols. Prentice
Hall, 1991.

5. Doug Lea. Concurrent Programming in Java. Addison Wesley, 1997.

6. B. Pell, E. Gat, R. Keesing, N. Muscettola, and B. Smith. Plan Execution for Au-
tonomous Spacecrafts. In Proceedings of the 1997 International Joint Conference
on Artificial Intelligence, 1997.

This article was processed using the IXTgX macro package with LLNCS style

68

